SYMPOSIUM CHAIRS AND CO-CHAIRS

Elisabeth de Carvalho, Aalborg University, Denmark, edc@es.aau.dk,
Kamel Tourki, Huawei Technologies France, kamel.tourki@huawei.com.

SCOPE AND MOTIVATION

Machine learning has become a prominent and rapidly growing research topic in the field of wireless communications. The application of machine learning to wireless communications is expected to deeply transform wireless communication engineering. In a discipline traditionally driven by well-established mathematical models, machine learning brings along a methodology that is data-driven and carries a major shift in the way wireless systems are designed and optimized. Research in the field of machine learning for wireless communications are still in an exploration phase. While machine learning has already been widely applied in domains such as self-organized networks, sensing or cognitive radio, its use is only emerging or not yet fully investigated in many research areas in wireless communications, and its viability for many such wireless applications continues to increase as the basic enabling technology and methods from machine learning continues to grow.

The goal of this symposium is to provide a platform for the latest results in the field of machine learning for wireless communications, shed light on the challenges and prospect of this new research field, open new perspectives and inspire innovation. The call for papers is driven towards the needs of 5G or post-5G wireless networks and associated new communication concepts where machine learning has the potential to be a true enabler. Furthermore, we encourage submissions in algorithmic developments in machine learning that are motivated by the specific constraints posed by wireless communications (e.g. low latency, massive connectivity, distributed and coordinated architectures).

TOPICS OF INTEREST

We invite submissions of unpublished works related to application of ML for wireless communications. We do not restrict the type of ML techniques. A non-exhaustive list of relevant topics is given below.

- Machine learning driven design and optimization of modulation and coding schemes
- Machine learning techniques for channel estimation, channel modeling, and channel prediction.
- Machine learning based enhancements for difficult to model communications channels such as molecular, biological, multi-scale, and other non-traditional communications mediums
- Transceiver design and channel decoding using deep learning
Machine learning driven techniques for radio environment awareness and decision making
Machine learning for Internet of things (IoT) and massive connectivity.
Machine learning for ultra-reliable and low latency communications (URLLC).
Machine learning for Massive MIMO, active and passive Large Intelligent Surfaces (LIS).
Machine learning for vision-aided wireless communications
Distributed learning approaches for distributed communications problems
(Deep) Reinforcement Learning and Policy learning for resource management & optimization
Reinforcement Learning for self-organized networks and AP/BTS optimization
Machine learning techniques for non-linear signal processing
Machine learning techniques for physical layer security
Machine learning techniques for network slicing and system coexistence.
Low-complexity and approximate learning techniques and power reduction applications
Machine learning for edge Intelligence, sensing platforms, and sense making
Algorithmic advances in machine learning for communication systems
Advancing the joint understanding of information theory, capacity, complexity and machine learning communications systems
Applications of transfer learning in wireless communication
Compression of neural networks for low-complexity hardware implementation
Unsupervised, semi-supervised and self-supervised learning approaches to communications

IMPORTANT DATES

Deadline for paper submission: 15 April 2021
Date for notification: 25 July 2021
Deadline for final paper submission: 1 September 2021

SUBMISSION INSTRUCTIONS

All papers for technical symposia should be submitted via EDAS through the following link